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Creep damage is the progressive reduction in the ma-
terial’s ability to resist stress and is manifested as an
increase in creep rate during tertiary creep eventually
resulting in failure. Monkman–Grant relationship [1]
that has contributed significantly to the development
of creep fracture models [2], relates minimum creep
rate ε̇m and rupture life tr as ε̇mtr = constant = CMG,
for which, we provided a physical basis in terms of
first order kinetics for creep [3–6]. In the present study,
Monkman–Grant constant CMG is henceforth referred
to as ‘Monkman–Grant Ductility (MGD)’ that is the
contribution of secondary creep strain to strain to fail-
ure, εf (Fig. 1). Monkman–Grant relation does not de-
scribe evolution of damage and its coupling to the de-
formation rate. The two approaches that describe this
coupling are ‘Continuum Creep Damage Mechanics
(CDM)’ by Kachanov–Rabotnov [7, 8] and ‘Materi-
als Properties Council (MPC)-Omega’ by Prager [9].
CDM treats damage as an internal state variable and an
important outcome is the creep damage tolerance fac-
tor λ [10, 11] defined as ratio of εf to MGD (Fig. 1)
i.e., λ = εf/(ε̇mtr) and is a constant. λ is suggested [10]
to be a better measure of creep ductility as it assesses
the susceptibility of a material to localized cracking
at strain concentrations [12], and thus can be consid-
ered as a material performance characteristic. Ashby
and Dyson [11] provided a physical basis to CDM ap-
proach and demonstrated that each damage micromech-
anism, when acting alone, results in a characteristic
value of λ. According to MPC-Omega approach [9],
creep rate ε̇ from its initial value ε̇0 increases with
strain ε as ε̇ = ε̇0 exp(�pε), where �p is reciprocal of
MGD, i.e., �p = 1/(ε̇mtr) for conditions showing neg-
ligible primary creep. The total damage coefficient �p
is the rate at which material’s ability to resist stress
is degraded by strain and is a material performance
characteristic that is related to creep damage tolerance,
i.e., higher the �p, lesser is the resistance to creep
damage.

In this paper, we identify that MGD is the critical
strain at which true tertiary creep damage sets in and
further introduces the concept of tMGD (Fig. 1) as the
time at which MGD is reached along the creep curve and
the total secondary creep ductility is exhausted. tMGD
can be obtained as the time at which ε − εp = MGD, εp
is the limiting primary creep strain, and for negligible
εp as shown in Fig. 1, tMGD is the time to reach MGD.
Damage evolves along the creep curve and for any dam-
age mechanism, we put forward that tMGD is the time at

which damage attains a critical level, beyond which its
accelerated growth leads to failure. For a typical case
of cavitation mechanism, it is shown that time to reach
critical cavity size tCCS matches well with tMGD. We
propose a critical damage criterion based on CDM as
well as MPC-Omega method in terms of a unique re-
lationship between tMGD and tr that depends only on λ.
Further, we demonstrate its universal applicability for
a wide range of materials and discuss its implications
to engineering creep design.

In order to validate our proposition that tMGD is the
time at which damage attains a critical level, we analyse
the mechanistic data reported by Davis and Williams
[13] on α-iron at various temperatures (815–978 K)
and stress levels (17.24–68.95 MPa). They observed a
two stage tertiary creep behaviour; in the first stage,
tertiary creep strain-time followed a t4/3 law, whereas
the second stage obeyed an exponential law. They con-
cluded that the end of first stage corresponds to the
time at which creep cavities attain a critical size and
the second stage is the ‘true tertiary creep’. Accord-
ingly, the time corresponding to the end of first stage
is designated as time to attain critical cavity size tCCS.
Creep curves that include secondary and tertiary creep
regimes were generated using creep data as well as
the tertiary creep strain–time relations given by Davis
and Williams [13]. εf was obtained as the sum of εp,
MGD and εt (cf. Fig. 1), where εt was calculated as
εt = A exp[β(tr − tot)] and the constant reported value
[14] of εp was taken as 0.051. From the generated creep
curves, λ (discussed later) and tMGD were determined;
tMGD was obtained as the time at which ε − εp = MGD.
The plot of tCCS vs. tMGD in Fig. 2 demonstrates that
tCCS matches well with tMGD and validates our proposi-
tion of tMGD as the time at which creep damage attains
a critical level. We like to extend such a validation for
other damage mechanisms, but it has not been possible
due to the lack of mechanistic data. Further, when two
coupled mechanisms operate as in the case of nickel
base superalloys [12], we suggest that tMGD might cor-
respond to the time at which cavitation intervenes the
strain softening mechanism causing true tertiary creep
damage.

Based on CDM approach, recently we proposed [15]
a new relationship between tMGD and tr in terms of
λ, and a brief description is given here. According
to CDM, the evolution of deformation and damage is
expressed in terms of internal state damage variable
ω and for uniaxial stressing [12, 16] ε̇ = ε̇0 (σ/σ0)n
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Figure 1 Schematic creep curve with negligible primary creep strain εp

illustrating time to reach Monkman-Grant ductility tMGD, time to onset
of tertiary creep tot, damage tolerance factor λ and limiting tertiary creep
strain εt.

Figure 2 Demonstrates tCCS ≈ tMGD for creep cavitation micromecha-
nism in α-Fe. Solid line is according to tCCS = tMGD and symbols cor-
respond to the experimental data.

[1/(1 − ω)]n and ω̇ = ω̇0 (σ/σ0)m [1/(1 − ω)]m, where
ε̇0 and ω̇0 are temperature dependent rate constants
at a stress σ0; n and m are constants. It is assumed
that ω = 0 when the material is in its undamaged state
and ω = 1 at rupture. Integration of these coupled
equations at constant stress, for m + 1 > n gives rela-
tion between strain fraction ε/εf and time fraction t/tr
as ε/εf = 1 − (1 − t/tr)1/λ, where λ = (m + 1)/(m −
n + 1). For negligible εp (Fig. 1), εt = (λ − 1)ε̇mtr,
since λ = εf/(ε̇mtr) and εt = εf − (ε̇mtr). At t = tMGD,
creep strain ε = MGD = ε̇mtr, and on substituting this
in the equation relating ε/εf and t/tr, and on rearrange-
ment we get εt/εf = (1 − tMGD/tr)1/λ. In this equation,
substituting for εt and λ, we obtain the critical damage
criterion in terms of a universal relationship between
tMGD and tr as

tMGD

tr
= 1 −

(
λ − 1

λ

)λ

= constant = fCDM, (1)

where fCDM can be determined knowing the value
of λ. Unlike tMGD and tr, tMGD/tr is independent of
stress and temperature. We call the physically based

Figure 3 Validity of critical damage criterion (Equation 1) for various
materials. Solid line is according to Equation 1 based on CDM approach,
whereas broken line is according to Equation 3 based on MPC–Omega
method. Symbols correspond to fEXP values obtained from double log-
arithmic plot of tMGD vs. tr for different materials. Data for W is taken
from Fig. 5.9, Mo from Fig. 8.13, Re and Re-Os-W alloy from Fig. 6.5
and Fig. 6.17B, respectively, from Ref. 18.

Equation 1 as critical damage criterion because dam-
age attains critical value at tMGD when the criterion
tMGD = fCDM tr is met, whereas tMGD is the time at
which creep damage attains a critical level. The the-
oretical plot of tMGD/tr vs. λ following Equation 1
is shown in Fig. 3, where tMGD/tr decreases with in-
creasing λ and saturates at 0.63. This is in order since
Equation 1 is of the functional form y = 1 − [1 −
(1/x)]x and in the limit x → ∞, y = (1 − 1/e) = 0.63.

Along the lines of CDM approach, we also deduce the
critical damage criterion based on MPC-Omega method
[9]. For the sake of brevity, we start from the equation
given by Prager (i.e., Equation 12 in Ref. [9]) for any
time t and at tr as

1

ε̇m�P
(e−�Pε − e−�Pε f ) = (tr − t), (2)

where �p = 1/ε̇mtr and from the definition of λ, εf =
λ/�p. Substituting for�p and εf as well as the condition
ε = MGD = ε̇mtr at t = tMGD in Equation 2 and on
rearrangement, the relationship between tMGD and tr in
terms of λ can be deduced as

tMGD

tr
= 1 − e−1 + e−λ = constant = fMPC. (3)

In Equation 3, when λ � 1, tMGD/tr = (1 − 1/e) =
0.63 and is in accordance with Equation 1 for large
values of λ. Using Equation 3, fMPC can be calculated
knowing the value of λ. The theoretical plot of Equa-
tion 3 is also shown in Fig. 3 illustrating that tMGD/tr
decreases with increasing λ and saturates at 0.63. It is
evident from Fig. 3 that both the Equations 1 and 3 are
identical in implying the uniqueness of the relation-
ship between tMGD and tr. Thus MPC-Omega method
further strengthens the proposed damage criterion (i.e.,
Equation 1) and reinforces that tMGD/tr depends only
on λ.

We demonstrate the validity of critical damage crite-
rion for a wide range of materials. Analysis of results
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Figure 4 Illustrates the constancy of λ for α-Fe, 9Cr-1Mo steel and
AISI 304 stainless steel. λ is determined as the intercept at ε̇m = 1 in the
double logarithmic plots of εf/tr vs. ε̇m, since εf/tr = λε̇m.

on 9Cr-1Mo ferritic steel [6, 17] and AISI 304 stainless
steel [3, 4] showing the constancy of λ is presented in
Fig. 4. Unlike 304 stainless steel (λ = 2.1), 9Cr-1Mo
steel exhibited separate constant values of λ = 10 and 5
for low and high stress regimes, respectively. Published
tensile creep data [13, 18–23] for various materials such
as pure metals, ceramics and composite of intermetal-
lic silicide were also analysed for λ, tMGD and tr. λ was
found to be constant for a given material and this for a
typical case of α-Fe [13] is shown in Fig. 4. For differ-
ent materials, logarithmic plots of tMGD vs. tr obeyed
tMGD ∝ tr (i.e., tMGD = fEXP tr) and the observed fEXP
values are shown as symbols in Fig. 3. The plot of tMGD
vs. tr in Fig. 5 demonstrates the validity of damage
criterion (Equation 1) for various materials and fCDM
values ranged from 0.65 for 9Cr-1Mo steel to 0.91 for
Al2O3. Unlike Fig. 3, the difference in fCDM values
is not seen in Fig. 5 due to logarithmic representation
of the plot. We emphasise that the damage mechanism
specific nature of damage criterion comes from fCDM
which is related to λ, as any change in damage mecha-
nism changes the value of λ [11].

Figure 5 Variation of tMGD with tr demonstrating the validity of critical
damage criterion (Equation 1) with fCDM values calculated using respec-
tive values of λ for different materials. Symbols represent experimental
data obeying Equation 1.

The damage criterion has important implications.
First is that tMGD conceptually divides creep curve into
two parts (Fig. 1), and this is something similar to plas-
tic instability in tension dividing the stress-strain curve
into uniform and non-uniform deformation regimes.
The second is its importance to engineering creep de-
sign. The ratio tMGD/tr saturating to ∼2/3 (Fig. 3) pro-
vides a physical basis for the factor of safety of 67%
employed on stress to cause rupture in 105 hr to arrive
at the design allowable stress [24, 25]. Further, as crit-
ical damage sets in and minimum ductility is assured
up to tMGD, we suggest that the stress to cause tMGD
in 105 hr can be considered as a new design criterion.
The proposed damage criterion also has its implication
to Robinson’s life fraction damage rule [25, 26], which
states that under non steady stress and temperature con-
ditions, failure occurs when �	ti/tri = 1, where 	ti
is the time spent at any given stress and temperature
and tri is the rupture life under those conditions. When
�	ti/tri either equals or exceeds unity, it can be conve-
niently used as a conservative basis for life prediction.
For situations when it predicts non conservative values
of remnant life when �	ti/tri < 1, we propose a modi-
fied life fraction rule as �	ti/tMGDi = 1, which is con-
servative. It can be shown that �	ti/tMGDi = 1 leads
to �	ti/tri < 1 as tMGD = fCDMtr (i.e., �	ti/tMGDi =
(1/ fCDM) �	ti/tri = 1 and �	ti/tri = fCDM < 1),
since it is reasonable to assume that the fCDM re-
mains constant (i.e., λ is constant) in a given stress-
temperature domain.
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